110 research outputs found

    A Robust Nonlinear Observer-based Approach for Distributed Fault Detection of Input-Output Interconnected Systems

    Get PDF
    This paper develops a nonlinear observer-based approach for distributed fault detection of a class of interconnected input–output nonlinear systems, which is robust to modeling uncertainty and measurement noise. First, a nonlinear observer design is used to generate the residual signals required for fault detection. Then, a distributed fault detection scheme and the corresponding adaptive thresholds are designed based on the observer characteristics and, at the same time, filtering is used in order to attenuate the effect of measurement noise, which facilitates less conservative thresholds and enhanced robustness. Finally, a fault detectability condition characterizing quantitatively the class of detectable faults is derived

    Distributed Adaptive Fault-Tolerant Control of Uncertain Multi-Agent Systems

    Get PDF
    This paper presents an adaptive fault-tolerant control (FTC) scheme for a class of nonlinear uncertain multi-agent systems. A local FTC scheme is designed for each agent using local measurements and suitable information exchanged between neighboring agents. Each local FTC scheme consists of a fault diagnosis module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault-tolerant controllers activated after fault detection and after fault isolation, respectively. Under certain assumptions, the closed-loop system's stability and leader-follower consensus properties are rigorously established under different modes of the FTC system, including the time-period before possible fault detection, between fault detection and possible isolation, and after fault isolation

    Autoencoder-based Anomaly Detection in Streaming Data with Incremental Learning and Concept Drift Adaptation

    Full text link
    In our digital universe nowadays, enormous amount of data are produced in a streaming manner in a variety of application areas. These data are often unlabelled. In this case, identifying infrequent events, such as anomalies, poses a great challenge. This problem becomes even more difficult in non-stationary environments, which can cause deterioration of the predictive performance of a model. To address the above challenges, the paper proposes an autoencoder-based incremental learning method with drift detection (strAEm++DD). Our proposed method strAEm++DD leverages on the advantages of both incremental learning and drift detection. We conduct an experimental study using real-world and synthetic datasets with severe or extreme class imbalance, and provide an empirical analysis of strAEm++DD. We further conduct a comparative study, showing that the proposed method significantly outperforms existing baseline and advanced methods.Comment: anomaly detection, concept drift, incremental anomaly detection, concept drift, incremental learning, autoencoders, data streams, class imbalance, nonstationary environment

    Data-efficient Online Classification with Siamese Networks and Active Learning

    Full text link
    An ever increasing volume of data is nowadays becoming available in a streaming manner in many application areas, such as, in critical infrastructure systems, finance and banking, security and crime and web analytics. To meet this new demand, predictive models need to be built online where learning occurs on-the-fly. Online learning poses important challenges that affect the deployment of online classification systems to real-life problems. In this paper we investigate learning from limited labelled, nonstationary and imbalanced data in online classification. We propose a learning method that synergistically combines siamese neural networks and active learning. The proposed method uses a multi-sliding window approach to store data, and maintains separate and balanced queues for each class. Our study shows that the proposed method is robust to data nonstationarity and imbalance, and significantly outperforms baselines and state-of-the-art algorithms in terms of both learning speed and performance. Importantly, it is effective even when only 1% of the labels of the arriving instances are available.Comment: 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 202

    Distributed Fault Diagnosis using Sensor Networks and Consensus-based Filters

    Get PDF
    This paper considers the problem of designing distributed fault diagnosis algorithms for dynamic systems using sensor networks. A network of distributed estimation agents is designed where a bank of local Kalman filters is embedded into each sensor. The diagnosis decision is performed by a distributed hypothesis testing method that relies on a belief consensus algorithm. Under certain assumptions, both the distributed estimation and the diagnosis algorithms are derived from their centralized counterparts thanks to dynamic average-consensus techniques. Simulation results are provided to demonstrate the effectiveness of the proposed architecture and algorithm

    Cooperative Simultaneous Tracking and Jamming for Disabling a Rogue Drone

    Full text link
    This work investigates the problem of simultaneous tracking and jamming of a rogue drone in 3D space with a team of cooperative unmanned aerial vehicles (UAVs). We propose a decentralized estimation, decision and control framework in which a team of UAVs cooperate in order to a) optimally choose their mobility control actions that result in accurate target tracking and b) select the desired transmit power levels which cause uninterrupted radio jamming and thus ultimately disrupt the operation of the rogue drone. The proposed decision and control framework allows the UAVs to reconfigure themselves in 3D space such that the cooperative simultaneous tracking and jamming (CSTJ) objective is achieved; while at the same time ensures that the unwanted inter-UAV jamming interference caused during CSTJ is kept below a specified critical threshold. Finally, we formulate this problem under challenging conditions i.e., uncertain dynamics, noisy measurements and false alarms. Extensive simulation experiments illustrate the performance of the proposed approach.Comment: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Distributed Diagnosis of Actuator and Sensor Faults in HVAC Systems

    Get PDF
    This paper presents a model-based methodology for diagnosing actuator and sensor faults affecting the temperature dynamics of a multi-zone heating, ventilating and air-conditioning (HVAC) system. By considering the temperature dynamics of the HVAC system as a network of interconnected subsystems, a distributed fault diagnosis architecture is proposed. For every subsystem, we design a monitoring agent that combines local and transmitted information from its neighboring agents in order to provide a decision on the type, number and location of the faults. The diagnosis process of each agent is realized in three steps. Firstly, the agent performs fault detection using a distributed nonlinear estimator. After the detection, the local fault identification is activated to infer the type of the fault using two distributed adaptive estimation schemes and a combinatorial decision logic. In order to distinguish between multiple local faults and propagated sensor faults, a distributed fault isolation is applied using the decisions of the neighboring agents. Simulation results of a 5-zone HVAC system are used to illustrate the effectiveness of the proposed methodology

    Fault-Tolerant Control for Systems with Unmatched Actuator Faults and Disturbances

    Get PDF
    A fault-tolerant control (FTC) scheme for a class of nonlinear systems with unmatched actuator redundancy and unmatched disturbances is proposed in this note. A methodology to construct unified smooth sliding mode control laws and update laws is proposed such that the equivalent injections of the first-order time derivatives of the unmatched actuator faults and unmatched disturbances can appear in the unmatched channels. The unmatched actuator faults and unmatched disturbances are completely canceled by these equivalent injections. Based on this methodology and using the backstepping design procedure, a set of smooth FTC sliding surfaces, FTC laws and update laws are then designed. With the help of the FTC law selecting mechanism, the output tracking errors of the closed-loop FTC system converge to zero asymptotically, and time-varying faults and disturbances are reconstructed. A simulation example is presented to illustrate the effectiveness of the proposed FTC method

    Integrated Ray-Tracing and Coverage Planning Control using Reinforcement Learning

    Full text link
    In this work we propose a coverage planning control approach which allows a mobile agent, equipped with a controllable sensor (i.e., a camera) with limited sensing domain (i.e., finite sensing range and angle of view), to cover the surface area of an object of interest. The proposed approach integrates ray-tracing into the coverage planning process, thus allowing the agent to identify which parts of the scene are visible at any point in time. The problem of integrated ray-tracing and coverage planning control is first formulated as a constrained optimal control problem (OCP), which aims at determining the agent's optimal control inputs over a finite planning horizon, that minimize the coverage time. Efficiently solving the resulting OCP is however very challenging due to non-convex and non-linear visibility constraints. To overcome this limitation, the problem is converted into a Markov decision process (MDP) which is then solved using reinforcement learning. In particular, we show that a controller which follows an optimal control law can be learned using off-policy temporal-difference control (i.e., Q-learning). Extensive numerical experiments demonstrate the effectiveness of the proposed approach for various configurations of the agent and the object of interest.Comment: 2022 IEEE 61st Conference on Decision and Control (CDC), 06-09 December 2022, Cancun, Mexic

    Distributed Search Planning in 3-D Environments With a Dynamically Varying Number of Agents

    Full text link
    In this work, a novel distributed search-planning framework is proposed, where a dynamically varying team of autonomous agents cooperate in order to search multiple objects of interest in three-dimension (3-D). It is assumed that the agents can enter and exit the mission space at any point in time, and as a result the number of agents that actively participate in the mission varies over time. The proposed distributed search-planning framework takes into account the agent dynamical and sensing model, and the dynamically varying number of agents, and utilizes model predictive control (MPC) to generate cooperative search trajectories over a finite rolling planning horizon. This enables the agents to adapt their decisions on-line while considering the plans of their peers, maximizing their search planning performance, and reducing the duplication of work.Comment: IEEE Transactions on Systems, Man, and Cybernetics: Systems, 202
    • …
    corecore